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Detection of geometric temporal changes in point clouds
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Figure 1: Comparison between the proposed method and a solution based on thresholding (4mm) the distance from the nearest
point in the other capture (NEAREST DISTANCE). The figure shows the binary segmentation (red = change, blue = no-change).
Our method produces a better output in the temporal interception regions (on the chair) and less noise due to the different
sampling directions of the scanner (over the desk and on the floor under the desk).

Abstract
Detecting geometric changes between two 3D captures of the same location performed at different moments is a
critical operation for all systems requiring a precise segmentation between change and no-change regions. Such
application scenarios include 3D surface reconstruction, environment monitoring, natural events management
and forensic science. Unfortunately, typical 3D scanning setups cannot provide any one-to-one mapping between
measured samples in static regions: in particular, both extrinsic and intrinsic sensor parameters may vary over
time while sensor noise and outliers additionally corrupt the data. In this paper, we adopt a multi-scale approach to
robustly tackle these issues. Starting from two point clouds, we first remove outliers using a probabilistic operator.
Then, we detect the actual change using the implicit surface defined by the point clouds under a Growing Least
Square reconstruction that, compared to the classical proximity measure, offers a more robust change/no-change
characterization near the temporal intersection of the scans and in the areas exhibiting different sampling density
and direction. The resulting classification is enhanced with a spatial reasoning step to solve critical geometric
configurations that are common in man-made environments. We validate our approach on a synthetic test case
and on a collection of real datasets acquired using commodity hardware. Finally, we show how 3D reconstruction
benefits from the resulting precise change/no-change segmentation.

Categories and Subject Descriptors (according to ACM CCS): [Computer Graphics]: Shape modeling—Point-based
models
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1. Introduction

Capturing time varying 3D point clouds has become more
and more common in the last years thanks to the introduc-
tion of fast 3D acquisition devices. The analysis of the output
data produced by these devices is a challenging task, espe-
cially in the field of the automatic and robust detection of ge-
ometric changes. In this context, the ultimate goal is often to
obtain an accurate segmentation between the change and the
no-change parts of an evolving scene acquired at different
moments. This segmentation can be used in several applica-
tions, such as 3D reconstruction [YSL∗14], urban growth
analysis [TBP13], environment monitoring [MRMT05] or
natural events management [LFM∗13], which are charac-
terized by different and opposite requirements. On the one
hand, the data consolidation of the input 3D geometry to pro-
duce a clean mesh, extracting only the static and stable part
of the scene removing the transient portions. On the other
hand, monitoring applications need to detect and analyze the
dynamic part to model the type of change. Over the last few
years, several solutions based on probabilistic frameworks
have been proposed to solve the change detection problem in
image datasets [PM07] or in mixed acquisitions (3D model
and photos at different times) [TBP11]. Other methods are
based on the acquisition of a dense and constant stream of
3D scans [YSL∗14], using RGB-Depth sensors and making
assumptions on the continuity of the changes in the scene.
Less attention has been devoted to the temporal comparison
of simple 3D scans without temporal coherence where no as-
sumption can be done on the delay between the captures. In
this case, to obtain an as accurate as possible segmentation,
the required features of a change detection algorithm are: (i)
to manage inputs without assumptions on connectivity and
temporal coherence; (ii) to be robust against noise, temporal
intersections and changes in sampling density and direction;
(iii) to account for challenging geometrical configurations,
such as occlusions or the movement of an object with coher-
ent overlapping in time.

This paper proposes a new method to automatically de-
tect geometric temporal changes between point clouds. Our
contribution is twofold: first we introduce a new point clas-
sification based on multi-scale analysis; second we propose
a spatial reasoning method for detecting and fixing critical
geometric configurations.

The Growing Least Square framework (GLS) [MGB∗12]
presents several good features for our problem. It allows
a continuous scale-space analysis of a point cloud with-
out any parameterization, connectivity or uniform sampling
condition. This framework defines a robust geometric de-
scriptor based on an Euclidean neighborhood that does not
only provide curvature measurements, like other scale-space
approach based on Difference of Gaussians [ZBVH09],
making its interpretation more intuitive and its computa-
tion faster. In particular it permits the comparison of pairs
of scale-space locations using a dimension-less and scale-

invariant dissimilarity function that simplifies the design of
an automatic method without tuning any scale-dependent
or dataset-dependent parameters. As we build our temporal
multi-scale analysis on top of GLS, our approach robustly
interprets the geometric elements in the context of their sur-
rounding, characterizing accurately each point. This aspect
is crucial for the proper classification of points laying near
the temporal intersection of two surfaces belonging to differ-
ent scans. It also makes the algorithm robust against differ-
ence of densities and sampling directions between the point
clouds (see Figure 1).

Our second contribution is a spatial reasoning procedure
that, using the information from the surrounding regions,
allows to detect and correct wrong change/no-change clas-
sifications in critical geometric arrangements that are very
common in man-made environments. In particular, based on
the analysis of the consistency and proximity of the geo-
metric data over time, we address two critical situations: the
classification of an occluded point; the wrong segmentation
of a surface with zero Gaussian curvature moved along the
direction with zero curvature, creating overlay in the time.
Finally, we present a method based on a controlled sub-
sampling of the input point clouds to speed-up the algorithm.

2. Background

Our work builds upon Algebraic Point Set Surfaces [GG07]
and their extension for scale-space manifold analysis, the
Growing Least Square method (GLS) [MGB∗12]. Given a
set of points P = {pi ∈ Rd}, the APSS framework defines
a smooth surface SP approximating P by applying a moving
least square spherical fit to the data, based on an algebraic
form of the 0-isosurface of the following scalar field:

su(x) = [1 xT xT x] ·u (1)

where x ∈ Rd and u ∈ Rd+2 = [uc ul uq]
T is the vector of

scalar coefficients of the sphere with uc,uq ∈ R ul ∈ Rd .
The goal of the GLS framework is to characterize any point
p ∈ Rd of a manifold at any scale t by an algebraic sphere
that best approximates its neighborhoodPt = {xi|‖xi−p‖≤
t}, using the fast fitting technique proposed by Guennebaud
et al. [GGG08]. It assumes that each point xi is equipped
with a normal~ni ∈ Rd . To give a geometric interpretation of
the scalar field su, the framework applies the Prat normal-
ization [Pra87] and proposes an alternative parametrization
sp = 〈t,τ,κ,φ,η〉 based on five parameters: the scale value t;
the algebraic offset distance τ between the evaluation point
p and the 0-isosurface; the signed curvature κ of the hyper-
sphere; the alignment measure φ between the scalar field and
the input normals ~ni; the unit normal η of the scalar field
at p. With this parametrization, we can compare a pair of
arbitrary scale-space locations sa = 〈ta,τa,κa,φa,ηa〉 and
sb = 〈tb,τb,κb,φb,ηb〉 using the following dimension-less
and scale-invariant dissimilarity function (see [MGB∗12] for
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more details):

δ(sa,sb) = (
τa
ta
− τb

tb
)2 +(taκa− tbκb)

2 +(φa−φb)
2 (2)

The parameter η is ignored in this pairwise comparison.

2.1. Related Work

Change detection has been extensively studied in computer
vision with the goal of finding regions of change in images of
the same scene taken at different times (see [RAAKR05] for
an overview). Extending the problem to 3D data translates
the problems to the 3D-to-3D and 2D-to-3D comparisons.

The most simple change detection technique consists in
computing the distance of the point cloud from the refer-
ence 3D model. Assuming that the input clouds are already
aligned, the idea is to compute the point-to-point, the point-
to-mesh or the mesh-to-mesh Hausdorff distance, using for
instance the Metro tool [CRS98], and to map this distance to
a quality value range using a threshold that specifies the min-
imum displacement to be considered as a change. Montaut et
al. [MRMT05] propose an octree-based strategy, comparing
three different distance measures between the octree cells
using the points in each cells: the average distance from the
nearest neighbor; the angle between the best fitting planes;
the Hausdorff distance. Butkienicz et al. [BCWR08] pro-
pose a solution for urban LIDAR change detection based
on the projection of the point on a 2D Delaunay triangula-
tion. Zeibak et al. [ZF07] convert a 3D laser scan in a range
panorama whose axes are the latitudinal and longitudinal
scanning angles and the ranges are the intensity values. After
the alignment of the panoramic range maps, they do a direct
comparison of the depth values for corresponding pixels. A
final processing is done to correct the region with no-data.
All these approaches exhibit a too local characterization of
the points, with a flawed management of the intersections of
two objects in the time. In this case all the methods return a
distance very close to zero for the points near the intersec-
tion, even if they belong to different surfaces. Another chal-
lenging problem is the selection of the distance threshold for
the change/no-change segmentation that makes the methods
less robust against noise and density variation. Our solution
overcomes these problems by computing a more robust char-
acterization that depends on the orientation of the surround-
ing surface. The direct point clouds comparison problem is
analyzed in a formal way in [MS04]. The main idea is to
use the Gromov-Hausdorff distance in a probabilistic setting
combined with a pairwise geodesic distance in order to ob-
tain a computational implementation of the framework. The
point clouds have to be densely and uniformly sampled from
the metric space, they must represent unique objects (mani-
folds) and the comparison result is global.

Another class of solutions solve the problem from a se-
quence of images using 3D reasoning. Pollard et al. [PM07]
propose an approach based on a 3D voxel model, where

probability distributions for surface occupancy and image
appearance are stored in each voxel. This probability distri-
butions are used to compare a new input image with the ex-
isting model and to extract a change binary mask for the im-
age. This approach was extended in [UM14] to generate 3D
change volumes rather than pixel-level image change prob-
abilities, without reconstructing a 3D model for the entire
scene. Schindle et al. [SD10] present a general framework to
recover the spatial and temporal information about the scene
structure and the cameras (a date for each camera and a time
interval for each 3D point). The framework decomposes the
problem into two steps: first the traditional Structure from
Motion problem and then a temporal inference problem by
reasoning probabilistically about visibility and presence of
the objects in the scene. Sakurada et al. [SOD13] propose
a solution to compute a probabilistic density of depths and
to estimate whether the scene changes or not by integrat-
ing the obtained depth density. A statistical approach is used
also in [XVP13] to compute the consistency of the space oc-
cupancy from different 3D datasets. Taneja et al. [TBP11]
exploits an existing 3D geometry to detect inconsistencies
across the input images. After the image-to-geometry reg-
istration, a probabilistic framework verifies the image con-
sistency with the geometry, incorporating semantic knowl-
edge to ignore changes occurring on non relevant parts of the
scene (vegetation, cars and pedestrians). A similar approach
is used in [TBP13] to detect changes in the geometry of a
city (cadastral 3D model) using panoramic images captured
by a car driving around the city.

Li et al. [LFM∗13] propose a specialized solution to ana-
lyze 4D point clouds of a plant and characterize its growing.
They propose an interleaved spatial and temporal analysis
in 4D to accurately locate budding and bifurcation events.
They present a forward-backward analysis to detect future
events and pull them back in time for an accurate location
in their infancy. Denning et al. [DP13] present MeshGit, an
algorithm for diffing and merging polygonal meshes from
3D modeling. It is based on a mesh edit distance, defined as
the cost of matching vertices and faces between meshes, and
on an iterative greedy algorithm to efficiently approximate
this distance. Yan et al. [YSL∗14] propose a new scanning
method in which the user actively modifies the scene while
scanning it, in order to reveal occluded regions and to re-
construct together the static parts into a complete unified 3D
model. They take advantage from the temporal coherence of
a continuous streams of 3D scans. Schmidt et al [SPA∗14]
present a new comparative visual analysis technique for 3D
meshes which enables the simultaneous comparison and al-
lows the interactive exploration of their differences.

3. Overview

Given two point clouds A and B, sampling the same en-
vironment and acquired in different times, the goal of the
proposed algorithm is to automatically detect the geometric
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Figure 2: Algorithm overview.

changes and to segment the no-change (NC(A) andNC(B))
and the change regions (C(A) and C(B)) of each cloud. We
assume that the input clouds have been already aligned. Our
algorithm is organized in three steps (Figure 2):

1. preprocessing of each point cloud to remove the outliers
and compute the required additional info, such as point
radius and normal (Section 4);

2. detection of the changes, using the GLS framework to
compute a multi-scale difference value for each point,
followed by a consistency check to detect inconsistencies
near the boundary with a change region (Section 5);

3. correction of the obtained results in special spatial config-
urations, such as occlusions and the motion with coherent
overlapping in the time, using the temporal proximity and
the propagation of the information from the surrounding
regions (Section 6).

For the notation used in the following sections see the Ap-
pendix in the additional material.

4. Preprocessing

The main tasks to prepare the input data are the detection
and removal of the outliers, the computation of the point ra-
dius and eventually the estimation of the point normals. The
detection of the outliers is performed using the Local Out-
liers Probability (LoOP) measure [KKSZ09], a local density
based method that provides an outlier score in the range of
[0,1]. This value represents the probability of a point for be-
ing an outlier. We delete from the clouds all the points with
a LoOP measure greater than 0.5 (Figure 3). For the compu-
tation of the point radius we use a local Gabriel Graph. For
each point p, we get the k-nearest neighbors Nk(p) (16 in our
test) and we compute the subset Sk ⊆ Nk of points x ∈ Nk(p)
such that ∀s ∈ Nk(p)− x , ‖p− s‖2 + ‖x− s‖2 ≥ ‖p− x‖2.
This means that the sphere centered at the midpoint between
p and x and with diameter equal to the edge from p to x does
not contain any other point in Nk(p)−x. We assign as radius
of the point radius(p) = max{‖p−x‖ | x ∈ Sk}. Finally, if
the input clouds are not equipped with the point normals we
compute them with a best fitting plane method [HDD∗92]
using 16 neighbors.

Figure 3: Outlier removal: (Left) input point cloud; (Right)
point cloud after outlier removal using a Local Outliers
Probability threshold equal to 0.5.

5. GLS Analysis

The general idea is to compute a multi-scale GLS descriptor
for a uniform sub-sampling of the volume occupied by the
point clouds and to map the differences of these descriptors
in the time over the original clouds (see Algorithm 1). As al-
ready described in Section 1, the GLS framework guarantees
robustness against the temporal interception of different sur-
faces and the different sampling characteristics of the clouds.

Algorithm 1 Change detection analysis by GLS

1: cellSide← 5 ·COMPUTEAVGRADIUS(A,B)
2: maxScale← 2 · cellSide
3: Q← EXTRACTNONEMTPYCELL(A,B,cellSide)
4: GLS A← COMPUTEGLS(A,Q)
5: GLS B← COMPUTEGLS(B,Q)
6: DIF ← COMPUTEDIFFERENCE(GLS A,GLS B)
7: MAPDIFFERENCE(A,DIF,maxScale)
8: MAPDIFFERENCE(B,DIF,maxScale)
9: CONSISTENCYCHECK(A,B)

The algorithm starts by embedding the point clouds in a
uniform grid aligned with the union of the two bounding
boxes. The size of the cell is chosen as a multiple of the
mean of the average point radius of each cloud (five times
the average radius). The middle points Q of the non-empty
cells are used as query points for the computation of the GLS
descriptors (Figure 4a). For each query point c ∈ Q, the al-
gorithm computes two GLS descriptors: GLS A

c and GLS B
c

using only points of the cloud A and B, respectively, around
c. Each GLS descriptor GLS A

c = {s A
c [i] = 〈ti,τi,κi,φi〉} is

made of 20 algebraic spheres computed by increasing the
search radius (the scale value t) such that ∀i ∈ [1 . . .20]
ti = maxScale · i/20. The maximum radius/scale is twice the
cell side. Doing so, we guarantee a minimum overlap be-
tween adjacent descriptors that makes the final computation
of the change value more robust. For each query point c, the
GLS descriptors GLS A

c and GLS B
c are compared by comput-

ing the dissimilarity set DIFc = {〈δi, ti〉c | ∀i∈ [1 . . .20] δi =

δ(s A
c [i], s B

c [i])} using the function δ defined in Equation 2.
The resulting dissimilarity sets DIFc are used to compute
the dissimilarity values for the original point cloud samples
using a weighted scheme (Figure 4b). For each point p of
the cloud, we collect the dissimilarity values Ep in the DIFc
at the smallest scales of each query point that contains the
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point p:

Ep = {〈δi, ti〉c ∈ DIFc | ti−1 < ‖p− c‖ ≤ ti} (3)

For example in the Figure 4b, for the point p, we select the
second scale of the query point c1 and the third scale of the
query point c2, ignoring the scales of the query point c3
that do not contain p. The change value chp is computed
as weighted mean of the collected dissimilarity values in
Ep, with weight proportional to the distance from the query
points of the descriptors:

chp =

∑
〈δi, ti〉c∈Ep

δi · (maxScale−‖p− c‖)

∑
〈δi, ti〉c∈Ep

(maxScale−‖p− c‖)
(4)

The dimensionless value of chp is in the range [0,1] and it
can be interpreted as a probability of the point to be a change.
Analyzing the experiment results we found the value 0.05 as
a good threshold for the change/no-change segmentation.

c1 c2

c3

(a)

c1 c2

c3

p1

(b)

Figure 4: (a) Query points for the computation of the GLS
descriptors (orange = point cloud A, violet = point cloud B,
green = query points for the GLS computation). A dissimi-
larity set with 3 scales is associated to each query point. (b)
Scales selected for the computation of the change value of
the point p1.

The results can exhibit some classification inconsistencies
near the boundary between the change and the no change
areas of the geometry, attributing a change status to a no-
change point (see the point on the table near the phone in
the second column of Figure 7a). This happens because,
when the query point of a GLS descriptor is very close to
a big change, the high dissimilarity values computed for the
smallest scales propagate their influence to the larger ones.
To solve this problem we add a consistency check based on
the intuition that a false-positive change point p meets three
conditions (Figure 5):

1. the dissimilarity value minp = argmin〈δi,...〉c∈Ep
‖p− c‖

of the smallest scale of the nearest query point is less than
0.05;

2. the nearest point q in the other cloud is close in Euclidean
distance (‖p−q‖< ε1 with ε1 = 2radius(p));

3. the nearest point q in the other cloud has similar normal
(~np ·~np > θ1 with θ1 = 0.99).

The output of this consistency check is shown in the third
columns of Figures 7a and 7b. The numerical values for this
thresholding were found experimentally and worked for all
the dataset we tested.

c1
c2

c3

p1

q1p2 q2

Figure 5: Data involved in the consistency check for the
points p1 and p2. The algorithm checks the change value of
the smallest scale of the nearest query point c1 and the dis-
tance in space and normal with the nearest point in the other
cloud, respectively q1 and q2. In the example, the check suc-
ceeds for p2 while fails for p1.

The use of a uniform grid allows a faster processing by
reducing the number of points actually used for the compu-
tation of the GLS descriptors. An alternative solution could
be to uniformly sample the datasets using a temporal-aware
Poisson-Disk pruning procedure [CCS12] but this is compu-
tational expensive (10 times slower). The discretization in-
troduced by the grid in the computation of the change value
chp is negligible thanks to the effect of the maximum scale
value (twice the cell side size), which guarantees the overlap
of adjacent descriptors and then a more robust change char-
acterization. Finally the choice of the cell side size impacts,
not only on the computation time (by reducing or increas-
ing the number of GLS descriptors), but also on the mini-
mum change features that we are able to detect: when the
cell side size grows we lose the detection of small changes,
while the areas with inconsistencies near a real change/no-
change boundary, where we apply the consistency check, are
extended. The values used for the cell side size, the max-
imum radius and the number of scales for GLS descriptor
were selected experimentally trading computation time for
classification accuracy.

6. Change Propagation and Consolidation

The results obtained with the procedure of Section 5 show an
unsatisfying behavior in two critical cases having a specific
spatial configurations. The first one is a small movement of
an object over a plane so that the object overlaps itself in time
(Figure 6a). This case involves objects with a zero Gaussian
curvature that are moved along the zero principal curvature
direction, aligning perfectly some regions of the geometry.
For instance, when a book slightly moves over a desk, the al-
gorithm detects a change only at the points around the sides

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



G. Palma et al. / Detection of changes in point clouds

a0
a1
a2
a3
a4
a5
a6

b0
b1
b2
b3
b4
b5
b6

A

B

a0 a2a1 a3

a4a5
a6

b1

b2b3
b4 b5

b0

b6

(a)

A
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b3
b4
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a0 a1
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a5a4
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b0
b1 b2

b5
b4b3

B
b1

a0
a1
a2
a3
a4
a5

b0
b1
b2
b3
b4
b5

(c)

Figure 6: 2D example of critical configuration: (a) the small movement of a simple object over the plane; (b) occlusion; (c)
temporal hole filling. The red segments are the regions detected as change with the algorithm in Section 5. On the bottom the
temporal proximity graph (red point = change, blue point = no change, green point = no change point classified as accumulation
point by the proximity graph). The transparent elements show the change points of the other time.

of the book, ignoring the ones on the top since they have the
exact same geometry in the two times. The second case is the
acquisition of new geometry in regions occluded in the other
scan (Figure 6b). In this case all the new acquired points are
classified as change. We propose a solution to correct the
classification using only geometric information and without
any semantic data. More precisely, the method recognizes as
change all points of the moved object and as no-change the
points in the occluded area.

Algorithm 2 Propagation algorithm

1: BUILDPROXIMITYGRAPH(A,B)
2: repeat
3: changeA← PROPAGATECHANGE(A, B)
4: changeB← PROPAGATECHANGE(B, A)
5: until (changeA+ changeB > 0)
6: PROPAGATENOCHANGE(A)
7: PROPAGATENOCHANGE(B)

To do so, we need to identify the regions characterized by
these critical cases and to propagate the information. These
objectives are reached in three steps as described in Algo-
rithm 2: (i) the construction of a graph using the proximity
information in time to identify the two critical cases (Sec-
tion 6.1); (ii) the propagation of the change information on
the points classified as no-change until there are no more
updates on both the clouds (Section 6.2); (iii) the propaga-
tion of the no-change info to the points classified as change
that have not updated their state in the previous step (Section
6.2). Figures 7a and 7b show the evolution of the change

classification during the different steps of the algorithm in
two examples with a critical spatial configuration.

6.1. Proximity Graph Construction and Analysis

To identify the critical cases our algorithm builds a tempo-
ral proximity graph between the point clouds A and B. This
graph is a bipartite directed graph where there is a directed
edge from a change point x ∈ C(A) to a no-change point
y ∈ NC(B) if the point y is the closest one to x (see the
graphs in the Figure 6). The closest point in NC(B) is cho-
sen according to the geodesic distance on the implicit surface
defined by the cloud A and vice-versa for the points in B. For
the construction of the graph, we use a parallel flooding algo-
rithm that spreads the minimum distance from a set of source
points (in our case the no-change points near a border with a
change regions) with an iterative procedure (see Algorithm 1
in the additional material). The obtained graph is character-
ized by vertices with in-degree greater than one (green points
in the graphs in Figure 6) that we call accumulation points.
These points can be classified in two categories, depending
on the proximity of a similar accumulation point in the other
point cloud (see Algorithm 3 in the additional material). For
each accumulation point x ∈ A the method looks for the set
D = {y∈ B | ‖x−y‖ ≤ 2 radius(x)} of nearby points in the
other cloud. If D does not contain any accumulation point
then x is a single-time accumulation vertex (a1 in Figure 6b).
This happens typically around the regions where the change
classification is due to an occlusion. Otherwise x is a double-
time accumulation vertex (points a1,a6,b0,b5 in Figure 6a)
and it characterizes all the other kinds of changes.
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ORIGINAL CLOUD CHANGE BY GLS CONSISTENCY CHECK FINAL RESULT

(a)

ORIGINAL CLOUD CHANGE BY GLS CONSISTENCY CHECK FINAL RESULT

(b)

Figure 7: Evolution of the change/no-change segmentation (red = change, blue = no-change) during the main steps of the
algorithm in the case of critical configurations: (a) a small movement of an object over a plane (a phone slightly rotated
over the desk); (b) occlusion (region of the floor occluded by a chair that has been moved before the second scan). For each
sub-figure: (Top) OFFICE T0. (Bottom) OFFICE T1.

6.2. Propagation procedure

The propagation of the change and no-change information
in the cloud uses an iterative approach that proceeds in two
stages: (i) the selection of reliable points that can propagate
their information on the near points with a different state; (ii)
the propagation of the information using a local planar test.
The algorithm starts with the propagation of the change data
(see Algorithm 5 in the additional material).

During the first iteration the algorithm selects the change
points that have a double-time accumulation vertex as near-
est in the proximity graph and are outside the volume de-
fined by the other point cloud. For example, in Figure 6a, the
points a2, a3, a4, which are outside the volume of the cloud
B, are selected as good candidates for the propagation while
b2, b3, b4, which are inside the volume of the cloud A, are
ignored. To determine if a point is inside the volume, we lo-
cally fit an algebraic sphere. Given a change point x ∈ C(A)

and its nearest point y ∈ B according the Euclidean distance,
we retrieve all the points Q = {p ∈ B | ‖p−y‖ ≤ ‖x−y‖}.
Then we compute the algebraic sphere su using Q and we
check the product uq · su(x) between the quadratic term uq
of the sphere and the value of the scalar field defined by su
in the point x. If the value is greater than zero then the point
x is outside the volume of B otherwise it is inside. In the fol-
lowing iteration the algorithm simply selects all the points
that have just modified their state in the previous one.

For the propagation stage the algorithm tries to spread the
change info of the selected points on the close no-change
points that are on the same plane. Formally, given a point x,
for each close no-change point y ∈ NC(A) such that ‖x−
y‖ ≤ radius(x), the method modifies the state of y from no-
change to change if the following condition is true:

~nx ·~ny > θ2 ∧ |(y−x) ·~nx|< ε2 (5)
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with ~nx and ~ny the normals of the points x and y. In all
our experiments we used the same values for the thresholds
θ2 = 0.99 and ε2 = radius(x)/10. During this propagation
stage, when a point x∈A modifies its status, it sets as change
also the nearest point p ∈ B iff x and p satisfy the condi-
tion of Equation 5. This check guarantees the propagation of
the change info in the other point cloud that could not have
change points outside the volume. For example in Figure 6a
the point cloud B does not have any change point outside
the volume of A that can propagate the change info on the
top plane. To solve this situation, during the first iteration the
point a0 propagates its state to the point a1 and to the nearest
point b1 in the cloud B. In this way, in the following itera-
tion, b1 can continue to propagate its change info, inducing a
correct characterization of the other points on the top plane.
The algorithm stops when no point modifies its state.

The final step is the propagation of the no-change infor-
mation using a similar procedure to the propagation of the
change status (see Algorithm 4 in additional material). In
the first iteration the method modifies the state of the change
points that have a single-time accumulation vertex as near-
est in the proximity graph. For example, in Figure 6b, after
the first iteration, b1, b2, b3, b4 modify their state in no-
change. Then it applies the same iterative flooding algorithm
to spread the no-change state to the nearest change points
that satisfy the conditions in Equation 5. In this process, the
algorithm ignores the points that have just switched state in
the previous propagation of the change info. For example, in
Figure 6a, this step classifies as no change the point b4 that
in the other time was occluded by the motion of an object.

In these propagation steps there is a special case that needs
more attention: the temporal hole filling, that is a hole closed
in the subsequent scan (Figure 6c). In this case we want to
avoid the propagation of the change info of the points that
cover the hole over the near no-change points and, vice-
versa, the propagation of the no-change info over the points
of the hole. The algorithm identifies the change patches that
are outside the volume, using a clustering method based on
the local density (all the change points within the point ra-
dius belong to the same patch). If for each change point on
the border of the patch there exist a close no-change point
that satisfies Equation 5 then all the points inside the patch
are hidden to the propagation procedures (they cannot prop-
agate their change state and cannot update their state in no-
change). For example in Figure 6c, the points a1 and a4 can-
not propagate their change info to a0 and a5 and vice versa
a0 and a5 cannot propagate its no-change info to a1 and a4,
therefore they retain the current state.

7. Results

We tested our algorithm on synthetic and real data. The syn-
thetic dataset is composed by two point clouds (LIVING
T0, LIVING T1) of a living room generated by ray casting
a modeled triangle mesh using a panoramic camera model.

The point clouds were acquired from different viewpoint and
were generated by moving some objects in the room. This
dataset has been used as ground truth to test the robustness of
the proposed method and to compute the error metrics. Fig-
ure 8 shows the comparison of the segmentation obtained
by the proposed algorithm with the ground truth. The fig-
ure shows also the results of two state-of-the-art algorithms.
The first one (NEAREST DISTANCE) computes a segmen-
tation based on a threshold on the distance of the nearest
neighbor in the other cloud. It produces inaccurate results
near the intersection of two surfaces and where the scan-
ner follows different sampling directions. The second ones
(DEPTH COMPARISON) computes a segmentation based
on the depth difference along the scanning direction. We cre-
ate a panoramic depth map for each point cloud, we align the
depth maps and we compare the depth values of correspond-
ing pixels. For this method we need to know the position
in space and the sampling steps of the scanner (number of
points along the latitude and the longitude axes). The re-
sults of our method are very accurate with a low number
of points with a wrong change classification (see Table 1).
Generally these wrong points are located around very thin
objects, where the propagation step of the change/no-change
information has a higher probability to fail. Table 1 shows
the statistics (number and percentage of points with a cor-
rect and wrong classification) of the results obtained by our
method and the two state-of-the-art algorithms in the LIV-
ING ROOM dataset.

# True
change

# True
no change

# False
change

# False
no change

GROUND TRUTH

LIVING T0
165946 5508694 0 0

(2.924%) (97.076%) (0%) (0%)

LIVING T1
166414 5503521 0 0

(2.935%) (97.065%) (0%) (0%)
OUR METHOD

LIVING T0
165619 5508512 182 317

(2.9186%) (97.0726%) (0.0032%) (0.0056%)

LIVING T1
166209 5503495 26 205

(2.932%) (97.064%) (0.0004%) (0.0036%)
NEAREST DISTANCE

LIVING T0
143667 5342394 166300 22269

(2.532%) (94.145%) (2.931%) (0.392%)

LIVING T1
144311 5372273 131248 22103

(2.545%) (94.75%) (2.315%) (0.39%)
DEPTH COMPARISON

LIVING T0
149608 5384700 123994 16328

(2.637%) (94.89%) (2.185%) (0.288%)

LIVING T1
150486 5411156 92365 15928

(2.654%) (95.436%) (1.629%) (0.281%)

Table 1: Statistics (number of points and percentage against
the size of each cloud) on the segmentation results showed
in Figure 8 against the ground truth of the synthetic dataset
(LIVING T0 = 5674630 points, LIVING T1 = 5669935
points).

We also made experiments with real datasets, by captur-
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Figure 8: Comparison of the segmentation of the proposed algorithm with the ground truth (synthetic dataset). The Figure
shows also the results of two other state-of-the-art algorithms: (NEAREST DIST.) threshold on the distance of the nearest
neighbor in the other time (threshold 3mm); (DEPTH COMP.) threshold on the depth difference along the scanning direction
between the two scans (threshold 2mm). On the right of each segmentation result (red = change, blue = no-change) there is the
map of the differences from the ground truth (black = point with a correct classification, yellow = false no-change points, green
= false change points).

Cloud1 Cloud2 Outliers1 Outliers2 Changes1 Changes2 Time
OFFICE T0 - OFFICE T1 6354k 6363k 293k (4.61%) 292k (4.58%) 517k (8.13%) 470k (7.38%) 251 sec
OFFICE T0 - OFFICE T2 6354k 6358k 293k (4.61%) 299k (4.70%) 732k (11.58%) 640k (10.06%) 339 sec
OFFICE T1- OFFICE T2 6363k 6358k 292k (4.58%) 299k (4.70%) 607k (9.53%) 566k (8.9%) 297 sec

LAB T0 - LAB T1 6226k 6194k 328k (5.26%) 327k (5.27%) 855k (13.73%) 695k (11.22%) 368 sec
OFFICE S1 - OFFICE S0.125 6354k 794k 293k (4.61%) 30085 (3.70%) 10525 (0.15%) 897 (0.11%) 88 sec

OFFICE S1 - OFFICE S0.125 DOWN 6354k 794k 293k (4.61%) 30085 (3.70%) 36989 (0.56%) 5217 (0.62%) 55 sec
OFFICE P1 - OFFICE P2 6280k 6283k 300k (4.77%) 303k (4.82%) 1084k (17.26%) 984k (15.66%) 504 sec

OFFICE P1 - OFFICE P2 DOWN 6280k 6283k 300k (4.77%) 303k (4.82%) 1100k (17.51%) 820k (13.05%) 112 sec

Table 2: Test case and performance data

ing two rooms in different times with a ToF laser scanner.
The first dataset shows an office in three times (OFFICE T0,
OFFICE T1, OFFICE T2)(for the comparisons of each pair
of scans see Figures 9, 10 and 11). The second dataset shows
a lab in two times (LAB T0, LAB T1) (Figure 12). All the

figures show a binary segmentation (red = change, blue =
no-change).

The different steps of the algorithm use three types of
thresholds: i) the change/no-change classification threshold
used in Equation 4; ii) the distance between normals, defined
as cosine of the angle of the two vectors, used in the consis-
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tency check (θ1) and in the Equation 5 (θ2); iii) the distances
ε1 and ε2 between points used in the consistency check
and in Equation 5. The thresholds for the change/no-change
classification and the distance between normals are numer-
ical dimensionless values (respectively 0.05 and 0.99) that
were found experimentally and worked for all the dataset
we tested. The thresholds for the points distance are defined
with respect to the local features of the point clouds, like the
local radius, using the dimensional unit of the acquisition
device of the scans.

Table 2 contains the info about the test cases and the pro-
cessing time. For each test we have the number of points of
the input clouds, the number and the percentage of removed
outliers, the number and the percentage of points detected
as changes and the time taken by the processing. We per-
form our test on a PC with an Intel Core i7-3770 with 16GB
of RAM. Typically the processing of 6M point clouds takes
from 4 to 6 minutes, depending on the number of real chan-
ges. To speed-up the search of the nearest points needed in
several steps of the algorithm, we compute a kd-tree of each
point cloud. In general the results show a precise change/no-
change segmentation, with a good interpretation of the criti-
cal spatial configurations described in Section 6 (Figures 7a
and 7b). Still, some classification errors remain on thin ob-
jects that present very few points.

Figure 9: Change detection results between OFFICE T0
(Left) and OFFICE T1 (Right) in two different views. More
info in the 1st row of the Table 2.

7.1. Robustness against density

To study the robustness against the point density we com-
pared a scan (OFFICE S1) with three different sub-sampling
versions of the same scan with 50% (OFFICE S0.5), 25%
(OFFICE S0.25) and 12.5% (OFFICE S0.125) of the orig-
inal points. These versions are obtained with a random se-
lection of the original points with uniform distribution. As
shown in the left column in Figure 13 for OFFICE S0.125
(see Figure 5 in additional material for the other cases), the
obtained results remain coherent, even if the algorithm de-
tects few false change points on thin structures. More data

Figure 10: Change detection results between OFFICE T0
(Left) and OFFICE T2 (Right) in two different views. More
info in the 2nd row of the Table 2.

Figure 11: Change detection results between OFFICE T1
(Left) and OFFICE T2 (Right) in two different views. More
info in the 3rd row of the Table 2.

Figure 12: Change detection results between LAB T0 (Left)
and LAB T1 (Right) in two different views. More info in the
2nd row of the Table 2.

about for OFFICE S0.125 is reported in Table 2 (5th row).
To speed-up the algorithm in the case of very different local
density we tested a sub-sampling preprocessing step in or-
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W/O DENSITY DOWNSAMPLING WITH DENSITY DOWNSAMPLING

Figure 13: Change detection between a scan and its sub-sampled versions to verify the robustness against the point density
(OFFICE S1 vs OFFICE S0.125). The left column shows the result obtained using directly the two scans while the right column
shows the result with the sub-sampling preprocessing to reduce the scans at the same local density.

W/O DENSITY DOWNSAMPLING WITH DENSITY DOWNSAMPLING

Figure 14: Change detection between two scans of the office acquired from the opposite corner of the room (OFFICE P1 and
OFFICE P2) and displayed from different viewpoints. The left column shows the result obtained using directly the two scans.
The right column shows the result with the sub-sampling preprocessing to reduce the scans at the same local density.

der to reduce the point clouds at the same local density. This
sub-sampling procedure is based on a variable radii Poisson
disk pruning where, for each point, the disk radius is equal to
the maximum between its radius and the radius of the nearest
point in the other cloud. In order to obtain a smooth varia-
tion of the scalar field that defines the disk radius, we apply a
local mean filtering of the field. The right column of Figure
13 shows the obtained results after the sampling process-
ing. The algorithm extracts the sub-sampled versions of the
clouds, it computes the change quality values and updates
the change values on the original clouds by up-sampling
(weighted average using the distance from the neighbors in
the sub-sampled cloud, where the neighbors are identified
by the local construction of a Gabriel Graph). Comparing
the results (right column Figure 13) with those computed
directly on the original clouds (left column Figure 13), the
differences are negligible with the advantage of a faster pro-
cessing time (6th row in Table 2). These two characteristics
are very useful when we want to compare two 3D scans of
the same environment acquired from different viewpoints,
like the example in Figure 14 (acquisition of the office from
two opposite corners: OFFICE P1 and OFFICE P2). In this
case, the detection results are quite similar but the processing
time is four times faster (see last two rows in Table 2).

Figure 15: Change detection results in noisy point clouds:
(Left) OFFICE P1; (Right) OFFICE P2. In this case the de-
tection of change points on the aluminum window frame is
due to the high level of noise in the scan OFFICE P2.

7.2. Limitations

Figure 15 shows the change/no-change segmentation in
noisy data (a window with an aluminum frame). In this case
the algorithm detects as change almost all the points on the
frame due to the high level of noise that characterizes the
second acquisition. In the specific the noise does not allow a
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robust comparison of the GLS descriptors and prevents the
propagation of the change info due to its influence on the
estimation of the normal (it is more probable that Equation
5 is unsatisfied). A more robust and complex comparison
should be able to detect the first scale of the GLS descriptors
where the contribution of the noise in the estimation of the
algebraic sphere is negligible (a larger scale than the one cur-
rently used). This implies to lose all the changes detected up
the scale that we need to ignore for the noise. However the
selection of such a scale is not trivial and should be spatially
adaptive to the noise level. We aim at exploring this research
direction in the future. For these reasons, our algorithm is
not suitable for the comparison of highly noisy point clouds,
such as the output of Structure-From-Motion algorithms. For
this class of input, the state-of-art methods that work directly
on the images are more appropriate.

7.3. Enhanced 3D Reconstruction

An advantage of using a precise change/no-change segmen-
tation is the possibility to enhance the output of a 3D re-
construction algorithm starting from inputs similar to our
datasets. For example, Figure 16 (and Figure 6 in the addi-
tional material) shows the triangulation results obtained us-
ing different inputs: the cloud OFFICE T0; the union of OF-
FICE T0 with the no change regions of the cloud OFFICE
T1; the simply union of the two clouds OFFICE T0 and T1.
The triangle meshes are obtained with the volumetric recon-
struction algorithm available in MeshLab [CCC∗08], based
on a discrete distance field and a standard Marching Cubes
algorithm. In this case, the use of our segmentation allows
the reconstruction of a more complete model (more data on
the desk and under the occlusion of the chair and of the bag)
without inconsistencies (better reconstruction of phone and
chairs).

8. Conclusion

We have presented a new approach for the automatic de-
tection of temporal geometric changes in point clouds. Our
method computes a multi-scale shape descriptor for few
points in the volume and then map the differences of these
descriptors in the time over the original clouds. This ap-
proach allows to characterize every point by using the ori-
entation of the surrounding implicit surface computed us-
ing a Moving Least Squares approach. The results after this
first step show a good change/no-change segmentation with
some inconsistencies due to special geometric configura-
tions, which are handled by modifying the change classifica-
tion using only geometric information around the point with-
out any semantic data. The final segmentation is accurate and
consistent in the detection of the real changes, as proved by
the statistics on the synthetic dataset. The algorithm shows
robustness against high density variations between the two
clouds and a reasonable tolerance to noise, detecting as a
change only the noisier surfaces. Finally we have presented

a simple preprocessing sub-sampling procedure to reduce at
the same density point clouds acquired from different posi-
tions. It introduces a limited amount of errors in the change
classification but permits significantly faster processing.

As future work, we plan to account for color data in the
change detection. The main challenge is the extension of the
GLS framework in order to take account of the color dif-
ferences. We envisage two possible solutions: (a) integrating
the color data in the weighting function used for the fitting
of the algebraic sphere; (b) fitting the data in a 6D space (po-
sition + color). A further extension is the development of an
interactive change detection method by moving the compu-
tation on GPU. Last, our segmentation results can be also
instrumental to perform higher level analysis such as under-
standing what moved, what is new and what disappeared.
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