
Volume 0 (1981), Number 0 pp. 1–5 COMPUTER GRAPHICS forum

Detection of geometric temporal changes in point clouds -
Additional Material

Gianpaolo Palma1, Paolo Cignoni1, Tamy Boubekeur2, Roberto Scopigno1

1Visual Computing Lab - ISTI - CNR, Italy
2Telecom ParisTech - CNRS LTCI - Institut Mines Telecom, France

Abstract
This document contains additional results of the paper “Detection of geometric temporal changes in point clouds”

Figure 1: Change detection results between OFFICE T0 (Left) and OFFICE T1 (Right) in two different places. More info in
the 1st row of the Table 1.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

G. Palma et al. / Detection of changes in point clouds

Figure 2: Change detection results between OFFICE T0 (Left) and OFFICE T2 (Right) in two different places. More info in
the 2nd row of the Table 1.

Figure 3: Change detection results between OFFICE T1 (Left) and OFFICE T2 (Right) in two different places. More info in
the 3rd row of the Table 1.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

G. Palma et al. / Detection of changes in point clouds

Figure 4: Change detection results between LAB T0 (Left) and LAB T1 (Right) in two different places. More info in the 2nd row
of the Table 1.

W/O DENSITY DOWNSAMPLING WITH DENSITY DOWNSAMPLING

Figure 5: Change detection between a scan and its sub-sampled versions to verify the robustness against the point density.
(First row) OFFICE S1 vs OFFICE S0.5. (Second row) OFFICE S1 vs OFFICE S0.25. (Third row) OFFICE S1 vs OFFICE
S0.125. The left column shows the result obtained using directly the two scans while the right column shows the result with the
sub-sampling preprocessing to reduce the scans at the same local density.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

G. Palma et al. / Detection of changes in point clouds

Cloud1 Cloud2 Outliers1 Outliers2 Changes1 Changes2 Time
OFFICE T0 - OFFICE T1 6354k 6363k 293k (4.61%) 292k (4.58%) 517k (8.13%) 470k (7.38%) 251 sec
OFFICE T0 - OFFICE T2 6354k 6358k 293k (4.61%) 299k (4.70%) 732k (11.58%) 640k (10.06%) 339 sec
OFFICE T1- OFFICE T2 6363k 6358k 292k (4.58%) 299k (4.70%) 607k (9.53%) 566k(8.9%) 297 sec

LAB T0 - LAB T1 6226k 6194k 328k (5.26%) 327k (5.27%) 855k (13.73%) 695k (11.22%) 368 sec
OFFICE S1 - OFFICE S0.5 6354k 3177k 293k (4.61%) 116k (3.65%) 1665 (0.0026%) 0 (0%) 140 sec

OFFICE S1 - OFFICE S0.25 6354k 1588k 293k (4.61%) 57782 (3.63%) 12945 (0.002%) 650 (0.0038%) 105 sec
OFFICE S1 - OFFICE S0.125 6354k 794k 293k (4.61%) 30085 (3.70%) 10525 (0.15%) 897 (0.11%) 88 sec

OFFICE S1 - OFFICE S0.5 DOWN 6354k 3177k 293k (4.61%) 116k (3.65%) 6259 (0.098%) 3196 (0.1%) 99 sec
OFFICE S1 - OFFICE S0.25 DOWN 6354k 1588k 293k (4.61%) 57782 (3.65%) 15310 (0.24%) 3782 (0.23%) 64 sec

OFFICE S1 - OFFICE S0.125 DOWN 6354k 794k 293k (4.61%) 30085 (3.70%) 36989 (0.56%) 5217 (0.62%) 55 sec
OFFICE P1 - OFFICE P2 6280k 6283k 300k (4.77%) 303k (4.82%) 1084k (17.26%) 984k (15.66%) 504 sec

OFFICE P1 - OFFICE P2 DOWN 6280k 6283k 300k (4.77%) 303k (4.82%) 1100k (17.51%) 820k (13.05%) 112 sec

Table 1: Test case and performance data

OFFICE T0 OFFICE T0 +NC(OFFICE T1) OFFICE T0 + OFFICE T1

Figure 6: Triangulation results from three inputs: (Left) OFFICE T0; (Center) OFFICE T0 plus the no change regions of
OFFICE T1; (Right) union of OFFICE T0 and OFFICE T1. The pictures in the center show a more complete reconstruction
without inconsistencies due to the intersection of different objects.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

G. Palma et al. / Detection of changes in point clouds

Appendix A

This appendix contains the pseudo-code and notation of the
algorithm described in Section 6 of the paper. The func-
tion FITALGEBRSPHERE(Q) uses the method described in
[GGG08] to fit an algebraic sphere using the point in the set
Q.

References
[GGG08] GUENNEBAUD G., GERMANN M., GROSS M. H.: Dy-

namic sampling and rendering of algebraic point set surfaces.
Compututer Graphics Forum 27, 2 (2008), 653–662. 5

A,B point clouds
C(A) subset of A classified as change
NC(A) subset of A classified as no-change
x point of the cloud
~nx normal of the point x
su algebraic sphere
s A

q algebraic sphere computed around q us-
ing the point in the cloud A

s A
q [i] i-th algebraic sphere of a GLS descrip-

tor computed around q using the point
in the cloud A

radius[x] radius of the point x
dist[x] distance of the point x from the nearest

no-change point in the other cloud ac-
cording the Geodesic distance

nearGeo[x] pointer to the the nearest no-change
point in the other cloud according the
Geodesic distance

indeg[x] in-degree of the point x in the temporal
proximity graph

updateToC[x] it is true if x must modify its state from
no-change to change

updateToNC[x] it is true if x must modify its state from
change to no-change

Table 2: Notation

Algorithm 1 Build the temporal proximity graph

1: function BUILDPROXIMITYGRAPH(A,B)
2: for all x ∈ C(A) do
3: N←{y ∈NC(B) | ‖y−x‖ ≤ radius[x]}
4: if N 6= ∅ then
5: dist[x]←min

y∈N
‖y−x‖

6: nearGeo[x]← argmin
y∈N

‖y−x‖

7: else
8: dist[x]←∞
9: nearGeo[x]← null

10: update← true
11: while update do
12: update← false
13: for all x ∈ C(A) do
14: N←{y ∈ C(A) | ‖y−x‖ ≤ radius[x]}
15: for all y ∈ N do
16: if dist[y]+‖y−x‖< dist[x] then
17: dist[x]← dist[y]+‖y−x‖
18: nearGeo[x]← nearGeo[y]
19: update← true

Algorithm 2 Check if the point y is near to the plane defined
by x

1: function CHECKPLANE(x,y)
2: return~nx ·~ny > t1∧|(y−x) ·~nx|< t2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

G. Palma et al. / Detection of changes in point clouds

Algorithm 3 Check if the point x is a double time accumu-
lation vertex in the proximity graph

1: function ISDOUBLEACCUMP(x,A)
2: if indeg[x]> 1 then
3: Nx← {y ∈ A | ‖y−x‖ ≤ radius[x]∧ indeg[y]>

1}
4: if Nx 6= ∅ then
5: return true
6: return false

Algorithm 4 Propagate the no-change information

1: function PROPAGATENOCHANGE(A)
2: for all x ∈ A do
3: updateToNC[x]← false

4: for all x ∈ C(A) do
5: if ¬ISDOUBLEACCUMP(nearGeo[x],A) then
6: updateToNC[x]← true

7: for all x ∈NC(A) do
8: if ¬updateToC[x] then
9: updateToNC[x]← true

10: update← true
11: while update do
12: update← false
13: for all x ∈ A do
14: if updateToNC[x] then
15: N←{p ∈ C(A) | ‖p−x‖ ≤ radius[x]}
16: for all p ∈ N do
17: if CHECKPLANE(x,p) then
18: updateToNC[p]← true
19: update← true

Algorithm 5 Propagate the change information

1: function PROPAGATECHANGE(A,B)
2: for all x ∈ A do
3: updateToC[x]← false

4: for all x ∈ C(A) do
5: if ISDOUBLEACCUMP(nearGeo[x],A) then
6: y← argmin

y∈B
‖y−x‖

7: Q←{p ∈ B | ‖p−y‖ ≤ ‖y−x‖}
8: su← [uc ul uq]← FITALGEBRSPHERE(Q)
9: if uqsu(x)> 0 then . outside the volume?

10: count← PROPAGATE(x,A,B)
11: update← true
12: while update do
13: update← false
14: for all x ∈ A do
15: if updateToC[x] then
16: temp← PROPAGATE(x,A,B)
17: update← update∨ (temp > 0)
18: count← count+ temp
19: return count
20:
21: function PROPAGATE(x,A,B)
22: count← 0
23: N←{p ∈NC(A) | ‖p−x‖ ≤ radius[x]}
24: for all p ∈ N do
25: if CHECKPLANE(x,p) then
26: updateToC[p]← true
27: count← count+1
28: b← argmin

y∈B
‖y−p‖

29: if CHECKPLANE(p,b) then
30: updateToC[b]← true

31: return count

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

