
SHELLCAM: INTERACTIVE GEOMETRY-AWARE VIRTUAL CAMERA CONTROL

Tamy Boubekeur

Telecom ParisTech CNRS LTCI Institut Mines-Telecom
(Author’s Draft - Final version to be published in the proceedings of the IEEE International Conference on Image Processing 2014)

ABSTRACT

We introduce ShellCam, a geometry-aware virtual camera
control model which defines a smooth motion subspace en-
abling Pan&Zoom navigation on arbitrary 3D objects. The
basic idea is to define a scale-dependent offset shell around
the visible geometry which provides, at any point, a mean-
ingful tangent direction for panning and helps computing
the camera-object distance to rule accurately a logarithmic
zoom motion. We define the underlying motion space as
a visualization hull and evaluate it on-the-fly using a mov-
ing least-squares approach. As a result, ShellCam provides
smooth object-aware 3D motions, combining rotations and
translations, based on a simple 2D user input such as typi-
cally produced by mouse motions. We also provide an effi-
cient GPU implementation which makes use of the standard
rasterization pipeline to compute this 3D motion efficiently.
Our approach is robust to inconsistent geometry such as point
clouds or polygon soups, works on shapes with complex
topology, does not require any pre-computation and can be
used on dynamic data. ShellCam offers a convenient control
for 3D inspection tasks and a transparent swap with other
control models for more general 3D navigation. Last, our
model is straightforward to integrate in any 3D application.
Index Terms— Virtual camera control model, interactive

navigation, 3D user interfaces, GPU algorithms.

1. INTRODUCTION

Interactive shape inspection is an important task in computer
graphics. Typical 3D tools allow to “walk around” 3D models
using a simple camera control model (CCM) – such as the vir-
tual trackball for instance – to map 2D user input (e.g., mouse
or touch screen) onto 6 degrees of freedom (DoF) camera mo-
tions. Unfortunately, even for expert users, such models im-
ply a tedious manual sequence of rotations and translations to
actually reach a desired inspection point of view (PoV).

We propose ShellCam, a “geometry-aware” CCM which
uses a view-dependent motion space deduced from the ob-
served geometry. Building upon point-based shape anal-
ysis, we introduce the notion of Visualization Hull to de-
fine a dynamic view- and scale-dependent shell subspace
for navigating around surfaces or closely inspecting them
(see Fig 1). This mimics the popular, novice-user-friendly,

ShellCam

Implicit Multi-scale
shell space

Geometry-aware
panning at a given scale

Z-Buffer Normals

On GPU

Fig. 1. Overview. A navigation shell is defined from the
scene’s geometry and the camera PoV using a dynamic point-
based MLS approximation. Consequently, our ShellCam pro-
vides a scale-dependent Pan&Zoom metaphor by mapping
the 2D user input onto this local, scale-dependent motion sub-
space.

Pan&Zoom mechanism present in online mapping systems
(e.g., GoogleMap). As a result, our CCM allows easy navi-
gation along complex trajectories around a shape and avoids
“lost in space” pitfalls. On the contrary to other advanced
CCMs, ShellCam does not make any assumption about the
scene (geometry, topology, representation), does not require
any pre-computed data structure, is naturally GPU-supported
and is fully compatible with others CCMs.

2. PREVIOUS WORK

Camera control [1] is a broad area covering topics which can
be as various as optimization, eye tracking and video games.
We focus on CCMs which are the most similar to ours: CCMs
for interactive surface inspection.

Beyond the virtual trackball metaphor, recently improved
by Henriksen [2], and which offers a 6-DoF control by map-
ping a mouse motion combined to a key control onto a subset
of the 6 dimensions, a number of CCM interaction metaphors
have been proposed and classified [3], such as orbiting and
flying [4], eye-ball-in-hand [5], through-the-lens control [6]
or virtual sidewalks [7].

For close inspection tasks, the HoverCam system [8] al-

x
v

u
c n

Visible
Geometry

t
t

t

c'
n'

x
v

u

t+1

t+1

t+1

Pan&Zoom
Signal

View Distance
Scale

High
Frequency

Prediction

Low
Frequency

Fig. 2. ShellCam Motion. The user input signal is converted
to a predicted motion from which the next frame visualization
hull is evaluated and used to position the camera.

lows to track surfaces by mapping mouse interaction accord-
ing to the observed model, switching between egocentric (ob-
ject centered) and exocentric (world centered) control. Ba-
sically, HoverCam encapsulates all motion dimensions into
a search procedure where the user input signal defines a di-
rection into which ”searching” for the next point to observe
on the surface. Special rules are applied to prevent unnatural
behavior around concavities and sharp corners. The search
procedure depends on a static data structure which strongly
limits scalability and the ability to handle dynamic scenes. As
the camera-object distance does not influence the search pro-
cedure, HoverCam is sensitive to high-frequency geometric
content and noisy data. Last, the search procedure supposes
an invasive implementation, with direct access to the applica-
tion scene graph.

When examining closely an object, points-of-interest can
lead the camera motion, such as with the UniCam [9]. Simi-
larly, in the context of mobile interaction, Navidget [10] offers
a point-and-focus interface where the user can instantly define
a location and an incident view direction on a 3D surface.

ScrutiCam [11] is a simpler system where the user points
and clicks on the surface to enforce camera alignment to the
surface normal. Although perfectly adapted to low-end de-
vices, such models lack a scale analysis and may lead to er-
ratic motions in the presence of high-frequency geometry.

More advanced scene analysis methods help designing
camera motions. For instance, the ShowMotion system [12]
allows designing cinematic sequences from a set of pre-
defined camera motion. Constraint optimization [6] can also
be used to define indirectly the camera parameters from the
image content.

In this paper, our aim is similar to the one developed in
HoverCam: providing a CCM which runs interactively and
derives its motion from the scene’s geometry to simplify user
input, while providing a view angle being as ”orthogonal” as
possible to the overall observed surface.

3. MODEL

Principle: Basically, the idea behind the ShellCam CCM is
to move the camera in a “fair” subspace near the object. By
fair, we mean smooth, not sensitive to high frequencies, tak-
ing into account the scale at which the shape is perceived and
offering orthogonal exploration (pan) and closer inspection
(zoom) control primitives. Our key idea is to model all these
constraints as a subspace which can be intuitively seen as a
low frequency offset of the visible scene’s geometry. We call
this object a Visualization Hull (VH) and use it to define both
Pan&Zoom interactions (Fig. 1).

The geometry-aware pan operator is defined as a tangent
motion on the VH and is typically mapped from the mouse
(or fingers for touch screens) movement.

The geometry-aware zoom operator offers progressive
close-up allowing users to zoom with a decaying speed when
getting closer to the geometry. Thus, we map the zoom
control onto a logarithmic interpolation between the VH
(where the camera is located) and the observed geometry it-
self. This control is typically mapped from the mouse middle
button/wheel (or from the touch screen’s pinch gesture).

These two camera controls are ultimately expressed as
rigid transformations of Ct = {xt,vt,ut, rt} with xt the
camera’s center, vt the view direction and ut/rt the up/right
vectors at frame t.

Motion: Let P = {{p0,n0}, ..., {pm,nm}} be a sam-
pling of the scene’s geometry with pi ∈ R3 the position and
ni ∈ R3 the normal of the i − th sample. We consider P
dense enough so that it provides a good approximation of the
scene. The user’s control signal is defined as kt = {dt, st}
with dt ∈ R2 the 2D pan signal and st ∈ R the zoom signal.

We define the ShellCam motion as:

Ct+1 = VP
kt(Ct)

This motion must account for the current distance and scale
– toning down the influence of small scale features w.r.t. the
current PoV – and provide smooth movements. We propose
to define the supporting smooth subspace VH of V by means
of a view-dependent shell approximation (see Fig. 2).

First, starting from Ct, we compute a weighted centroid c
and normal n from P:

c =

∑
i ω

vt

xt (pi)Π
ni
pi

(xt)∑
i ω

vt

xt (pi)
and n =

∑
i ω

vt

xt (pi)ni

||
∑

i ω
vt

xt (pi)ni||

with Πn
p(x) the orthogonal projection of x onto the tangent

plane at p. Using this projection makes the combination Her-
mitian which has proven to better preserve convexity than
linear combinations [13]. We compute weights in a view-
dependent fashion by centering an anisotropic weighting ker-
nel ω at xt. This kernel is defined as the product of two ker-
nels: one accounting for distance in image space (i.e. samples
near the screen border have less impact) and one accounting

Continuous Hermite Scale Space

View Distance

ShellCam

Fig. 3. Visualization Hull. A different shape scale is con-
sidered according to view distance. Here, we illustrate what
would be the visualization hull if completely reconstructed
from many views scatterred among 6 distances. This implic-
itly defines an hermite scale-space.

for 3D distances to the camera (i.e., far away samples have
less importance than nearby ones). Gaussian kernels can be
used safely in both cases. Second, we compute α = ||xt−c||
which captures the camera distance to the visible geometry at
the current scale. Third, we predict a tangent motion from Ct
by computing

x′ = xt + d0.r
t + d1u

t

with c′ and n′ defined accordingly.
Finally, we compute the updated camera position

xt+1 = c′ + fst(α) ∗ n′

with f a logarithmic zoom function, vt+1 = −n′, ut+1 an or-
thogonal vector to vt+1 which minimizes torsion with ut and
rt+1 = vt+1 ⊗ ut+1. Users can optionally define a “global”
up direction anytime and the ShellCam will conform mini-
mal u-torsion to it while maintaining C ortho-normal. This is
particularly useful for objects having a natural up-right orien-
tation [14].

4. ANALYSIS

Our motion evaluation procedure defines an underlying sub-
space VH which captures low frequencies of the observed ge-
ometry from a given PoV. Intuitively, this subspace is a view-
dependent offset shell. More precisely, our camera centered
weighted combination of P is inspired by the moving least-
squares approximation [15] in its simplified form [16] and
automatically adjusts the frequency content of camera move-
ments w.r.t. (visible) samples. We experimented with differ-
ent weighting kernels and observed highest regularity using
a Hermitian combination (see Fig. 3). Moreover, smoothly
decaying kernels ensure that global/low frequency trajecto-
ries are produced for distant PoVs while local/high frequency
modulations are progressively inserted when getting closer to
the geometry. In practice, a single horizontal user pan signal
may either result in a simple rotation when observing the ob-
ject remotely, or in a more complex trajectory when zooming
closer to it. Note that the VH is never entirely reconstructed
but only implicitly evaluated at a single location: the camera
center.

ShellCam

Z/ND-Buffer

Scene's Geometry Framebuffer

Visualization Hull
Motion Subspace

Pan/Zoom motion

Display
View-dep Offset ShellRasterization

Fig. 4. Screen Space GPU Motion Evaluation. Each ren-
dered frame provides a view-dependent scene’s sampling for
the next camera motion thanks to its Z- (or ND-)Buffer.

1.Panning

2.Zoom
ing

3.Panning

Recorded
ShellCam
Trajectory

Fig. 5. View-Dependent Motion. Here, we recorded the
camera trajectory (in red) under ShellCam motion for a
pan/zoom/pan sequence. Note how the motion mimics an or-
bit when performed from a large enough distance.

5. IMPLEMENTATION

While a pure CPU implementation can cope with a dynamic
sampling P at 60Hz or more for scenes made of a few hun-
dreds thousands triangles, we reach much higher perfor-
mances by exploiting the GPU rendering pipeline: indeed, the
rasterization’s Z-Buffer already provides a camera-centered
sampling of the visible geometry (see Fig 1). Therefore we
compute P from it and either its derivatives in screen space
or an extra deferred shading buffer for normals (ND-buffer).
In practice, a parallel GPU kernel is executed to perform the
motion evaluation (see Fig. 4). On a modern workstation,
this GPU evaluation has a negligible computational footprint
compared to (even basic) rendering. Nevertheless, we can
easily adapt it to a limited horsepower (e.g., mobile device)
by simply subsampling P . As we seek for smooth, low
frequency motions, this can be done safely up to a strong
subsampling ratio. In our GPU implementation, this boils
down to a uniform ND-buffer sub-sampling process.

3.Panning

1.
Pan

ni
ng

2.
Zo

om
in

g

Recorded
ShellCam Trajectory

Fig. 6. Multiscale. Higher frequencies are introduced pro-
gressively in the trajectory (in red) when getting closer.

Recorded
ShellCam Trajectory

Fig. 7. Scalability. Our GPU implementation allows to use
ShellCam on large models such as this 7.2M tri. Dragon.

6. RESULTS

The primary focus of our work is object inspection. For this
task, our approach exhibits a number of useful properties.
First, the observed shape may have an arbitrary topology,
the motion will naturally adapt to it (see Fig. 5). Second,
geometric features can appear at different scales: our motion
procedure avoids jaggy trajectories when curvature varies
quickly in image space (see Fig. 6). Third, as our approach is
free from any search process or pre-computation and builds
upon the hardware supported standard graphics pipeline, it
scales easily to large, potentially dynamic scenes (see Fig. 7).
Last, even a sparse polygon soup (e.g. a tree) is enough to
evaluate the visualization hull and preserve a smooth motion
(see Fig. 8). We illustrate the ShellCam behavior compared
to models which are blind to geometry (see Fig. 9). While
such CCMs provides the same motion whatever the scene
and PoV, our ShellCam provides geometry-aware panning
motions conforming to visible shapes. Note that ShellCam

Recorded
ShellCam Trajectory

Panning

Fig. 8. Robustness. Even on a polygon soup as chaotic as
this tree mesh, ShellCam panning remains a smooth motion.

Flying Orbiting ShellCam

Fig. 9. Motion comparison. Moving according to a 1D
“pan” user signal and mapping it to 2 classical motions (left
and middle) and ShellCam motion (right).

can be (des)activated at any time during inspection, allowing
a transparent swap to and from other CCMs. Consequently,
we believe that ShellCam is more a complementary model to
other CCMs than an alternative. Indeed, this opens an inter-
esting direction for future work on ”meta” CCMs, blending
and combining efficiently different models [9] according to
higher level analysis of both scenes and users.

7. CONCLUSION

ShellCam offers an intuitive virtual camera control to users,
with complex trajectories easily defined through the ubiqui-
tous Pan&Zoom metaphor. By computing a geometry-aware
motion on-the-fly, ShellCam works on any dynamic scene,
including non-consistent geometry, and its GPU implemen-
tation allows using it on large models as well. Last, the user
can swap between ShellCam and other CCMs (e.g., track-
ball) anytime. Although ShellCam cannot replace full 6-DoF
CCMs in general, it represents an efficient alternative for
model inspection tasks.

Acknowledgements. This work has been partially funded
by the European Commission under contracts FP7-323567
HARVEST4D and FP7-287723 REVERIE, and by the ANR
iSpace&Time project.

8. REFERENCES

[1] Marc Christie, Patrick Olivier, and Jean-Marie Nor-
mand, “Camera control in computer graphics,” Com-
puter Graphics Forum, vol. 27, no. 8, pp. 2197–2218,
2008.

[2] Knud Henriksen, Jon Sporring, and Kasper Hornbaek,
“Virtual trackballs revisited,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 10, no. 2, pp.
206–216, 2004.

[3] D. Bowman, D. Johnson, and L. Hodges, “Testbed en-
vironment of virtual environment interaction.,” in Proc.
ACM symposium on Virtual Reality Software and Tech-
nology, 1999, pp. 26–33.

[4] Desney S. Tan, George G. Robertson, and Mary Czer-
winski, “Exploring 3d navigation: combining speed-
coupled flying with orbiting,” in Proc. ACM SIGCHI,
2001, pp. 418–425.

[5] Colin Ware and Steven Osborne, “Exploration and vir-
tual camera control in virtual three dimensional envi-
ronments,” in Proc. ACM Symposium on Interactive 3D
(I3D), 1990, pp. 175–183.

[6] Michael Gleicher and Andrew Witkin, “Through-the-
lens camera control,” in Proc. ACM SIGGRAPH, 1992,
pp. 331–340.

[7] Andrew J. Hanson and Eric A. Wernert, “Constrained
3d navigation with 2d controllers,” in Proc. IEEE Visu-
alization, 1997, pp. 175–ff.

[8] Azam Khan, Ben Komalo, Jos Stam, George Fitzmau-
rice, and Gordon Kurtenbach, “Hovercam: interactive
3d navigation for proximal object inspection,” in Proc.
ACM Symposium on Interactive 3D (I3D), 2005, pp. 73–
80.

[9] Robert Zeleznik and Andrew Forsberg, “Unicam, 2d
gestural camera controls for 3d environments,” in Proc.
ACM Symposium on Interactive 3D (I3D), 1999, pp.
169–173.

[10] Martin Hachet, Fabrice Dècle, Sebastian Knödel, and
Pascal Guitton, “Navidget for easy 3d camera position-
ing from 2d inputs,” in Proc. IEEE Symposium on 3D
User Interfaces (3DUI), 2008, pp. 83–89.

[11] Fabrice Dècle, Martin Hachet, and Pascal Guitton,
“Scruticam : Camera manipulation technique for 3d ob-
jects inspection,” in Proc. IEEE Symposium on 3D User
Interfaces (3DUI), 2009, pp. 19–22.

[12] Nicolas Burtnyk, Azam Khan, George Fitzmaurice, and
Gordon Kurtenbach., “Showmotion: Camera motion

based 3d design review.,” in Proc. ACM Symposium on
Interactive 3D (I3D), 2006, pp. 167–174.

[13] Marc Alexa and Anders Adamson, “Interpolatory point
set surfaces—convexity and hermite data,” ACM Trans-
actions on Graphics, vol. 28, no. 2, pp. 1–10, 2009.

[14] Hongbo Fu, Daniel Cohen-or, Gideon Dror, and Alla
Sheffer, “Upright orientation of man-made objects,”
ACM Transactions on Graphics, pp. 1–7, 2008.

[15] David Levin, “The approximation power of moving
least-squares,” Math. Comput., vol. 67, pp. 1517–1531,
1998.

[16] M. Alexa and A. Adamson, “On normals and projec-
tion operators for surfaces defined by point sets,” in
Proc. Eurographics Symposium on Point-based Graph-
ics, 2004, pp. 149–156.

