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Abstract
The idea of Phong Shading is applied to subdivision surfaces: nor-
mals are associated with vertices and the same construction is used
for both locations and normals. This creates vertex positions and
normals. The vertex normals are smoother than the normals of the
subdivision surface and using vertex normals for shading attenuates
the well known visual artifacts of many subdivision schemes. We
demonstrate how to apply subdivision to normals and how blend
and combine different normals for achieving a variety of effects.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Surface representations; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Shading
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1 Introduction

Meshes are the dominant representation of computer generated ob-
jects for visual effects. They are simple and versatile, but suffer
from discontinuous derivatives and the resulting visual artifacts.
Subdivision surfaces define smooth surfaces over a given base mesh
and are popular because their recursive construction allows gen-
erating discrete approximations to the smooth surface at arbitrary
resolutions. Generally, faces are subdivided by inserting new ver-
tices and then the locations of old and new are updated. The update
rules often are derived from analogies to spline surfaces. The basic
schemes cover triangle and quad meshes and interpolate the vertex
positions or approximate them providing a surface with better qual-
ity[Catmull and Clark 1978; Doo and Sabin 1978; Loop 1987; Dyn
et al. 1990].

For many of the popular subdivision schemes, the surface is C2

continuous and well-behaved except for irregular vertices (i.e. ver-
tices with degree other than 4 in a quad mesh or 6 in a triangle
mesh) where continuity is only C1. Unfortunately, this is not only
a theoretical defect and even if C2 or a higher degree of paramet-
ric smoothness is enforced, surfaces do exhibit shape defects lead-
ing to visual artifacts at irregular vertices [Reif 1995; Zorin 1998;
Prautzsch 1998; Peters and Reif 2004; Karčiauskas et al. 2004].
There are several approaches to improve the situation at irregular
vertices (see, e.g., [Levin 2006; Karčiauskas and Peters 2007]), but
they usually come at the expense of a more complicated scheme, or
a fundamental change in the modeling paradigm, which make them
less attractive in some applications.

A standard trick in computer graphics, where the actual shape is
only necessary to generate the visual result, is using normals for
shading computations that are not orthogonal to the surface. Phong
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Figure 1: The coarse TWEETY mesh is subdivided using Loop and
modified Butterfly subdivision. Subdivision Shading uses subdivi-
sion rules for computing vertex normals instead of using surface
normals from the limit surface. It results in visually smoother shad-
ing, especially around irregular vertices.

Shading [Phong 1975] associates normals with vertices and lin-
early interpolates them across faces. Note that the same geometric
construction is used for positions and normals inside the triangles
spanned by vertex positions and vertex normals. In this way, the
idea can be extended to quadratic [Boubekeur and Schlick 2007] in-
terpolation, however, the degree of normal interpolation could also
be higher [van Overveld and Wyvill 1997; Loop and Schaefer 2008]
or lower [Vlachos et al. 2001; Boubekeur and Alexa 2008] than the
degree of geometric interpolation.

Subdivision surfaces have a smooth geometry so that silhouettes
will look very good. The remaining visual problem appears in the
shading around irregular vertices, where the normals are only C0

(for standard schemes). Our idea for hiding this problem is a gen-
eralization of Phong Shading: vertex positions and vertex normals
are treated in the same way, i.e. the interpolation process applied to
vertex locations is also applied to vertex normals. For a subdivision
surface this means we associate normals with vertices of the base
mesh, and then compute vertex normals for all vertices by applying
the subdivision rules to the normal vectors.

In the following we will briefly recall the basics of subdivision and
then explain how to apply the schemes to vertex normals rather than
positions. In particular, we explain how to interpolate normals and
how to blend the normals of subdivision surface where they are
expected to be well behaved with the normals derived from subdi-
vision around irregular vertices. The results show a clear improve-
ment of the shading (see Fig. 1). We also discuss some applications



Figure 2: Catmull-Clark subdivision applied to a cylinder. The
left image is rendered with the normals of the subdivided mesh, the
right image shows subdivided normals computed using Catmull-
Clark rules. The color plot in the middle illustrates the difference
of the vertex normals

together with emerging open problems.

2 Background

Subdivision surfaces are constructed from a base mesh M 0 =
(K0,V0) whose vertex positions V0 = {v0

1,v
0
2, . . .} and combina-

torial structure is given. A subdivision scheme is defined as a set
of rules for inserting new vertices (i.e. updating K) and then mod-
ifying the positions of the old and new vertices (i.e. updatig V).
Applying the rules to M0 yields M1,M2, and so forth. For many
sets of rules it has been proved that the sequence of meshes Mi
converges to a smooth limit surface.

The modified positions for old and new vertices are described in
terms of affine weights for the old positions, arranged in a mask de-
scribing which vertices receive how much weight. Note that each
local combinatorial structure requires its own mask. While the in-
serted vertices always require a mask to define their position in
space, the update of existing vertices is only done in some schemes.
A usual assumption is that most vertices are regular, i.e. have de-
gree 6 in a triangle mesh or degree 4 in a quad mesh. Irregular
vertices are assumed to be isolated, i.e. surrounded only by regu-
lar vertices. This allows limiting the number of masks necessary
for implementing the procedure. Specific masks for most common
subdivision schemes and more details on their variants can be found
in the recent book by Peters and Reif [2008]. In most applications
subdivision schemes are considered practical if they (i) generate a
smooth limit surface, i.e. the limit surface is C1 everywhere, prefer-
ably C2, ideally with bounded curvature, (ii) use the same mask in
each step, i.e. they are stationary (the i-th subdivision pass is in-
dependent of i), (iii) with the number of entries in the mask being
small so that the evaluation is fast.

The position of a point on the limit surface can be computed from
its parametric position for several schemes [Stam 1998] – this can
be applied to any coordinate in a linear space, for example texture
coordinates [DeRose et al. 1998] and tangents, the latter offering
normals for shading the surfaces in practice.

3 Subdividing normals for shading

The main idea of our approach is equipping each vertex with a nor-
mal and then applying the subdivision mask to geometry and nor-
mals (used for shading) in each step of subdivision.

Formally, if N0 = {n0
1,n

0
2, . . .} are the vertex normals of the base

mesh, vertex normals for refined meshes are computed by com-
puting weighted combinations of these normals, with the weights

Figure 3: Subdividing vertex normals also works on boundaries.

specified by the mask of the subdivision scheme. The normals N0

could be supplied by the user, as are the vertex positions, or they
could be computed from the vertex positions in the base mesh, for
example the angle-weighted average of incident faces normals.

If the subdivision scheme provides a C1 geometry, we would like
that it provides a similarly smooth limit when applied to the ver-
tex normals. However, normals are entities on S2 rather than R3,
and for the continuity property to carry over we need to define lin-
ear combination in an appropriate way on the sphere. The prob-
lem of defining weighted combinations of points on the sphere has
been analyzed by Buss & Fillmore [2001] and they essentially de-
fine the weighted combination of normals n1,n2, . . . with weights
w1,w2, . . . as

min
n∈S2 ∑

i
wi (distS2(n,ni))

2 (1)

where the distance on S2 is measured geodesically. The following
description of weighted combinations on the sphere illustrates this
definition: the normal n has the property that the linear combina-
tion of normals mapped to the exponential map at n reproduces n.
Linear interpolation in exponential maps around intermediate solu-
tions converges to this stationary point. This concept leads to the
following algorithm:

1. As a starting normal we use the linear combination of the nor-
mal vectors and then normalize: nk=0 = ∑i wini/‖∑i wini‖

2. Map all input normals orthogonally to a plane orthogonal to
nk, scale them to have distance to origin corresponding to the
angle to nk (exponential map):

ñi =
∠(nk,ni)∥∥ni−

(
nT

i nk
)

nk
∥∥ (

ni−
(

nT
i nk

)
nk

)
(2)

3. Perform linear combination in the map, i.e. ñk+1 = ∑i wiñi.
4. Map the result back onto the sphere, by rotating nk around

the axis nk× ñk+1 with an angle corresponding to ‖ñk+1‖ to
define nk+1.

5. If (nk)Tnk+1 > ε go back to step 2.

Note that accuracy can be traded for speed by performing only few
iterations. We have found that performing many iterations has usu-
ally little effect on the visual quality; in particular, simple linear
combination and normalization usually works well. This is consis-
tent with the concept of proximity [Wallner and Dyn 2005], which
suggests that the linear combination and subsequent normalization
of normal vectors also defines a smooth subdivision scheme (albeit
a proof for this concept is missing).

4 Controlling the normals

In the following we discuss several ways to control the normals.
We consider first how and at what level of subdivision to generate
base normals and, second, linearly blending subdivided and surface
normals for achieving certain effects.



Figure 4: The subdivision of normals can be started from the base
mesh or after few levels of geometric subdivision. The images show
the results starting with the normals of the base mesh, the normals
of the mesh subdivided one time and two times. The right image is
shaded with normals computed at the fully subdivided mesh.

4.1 Generating base normals

As subdivision defines a smooth surface, it is typically not neces-
sary to supply normals with the base mesh (an exception is if nor-
mal control is wanted [Biermann et al. 2000]). We have found that
computing the vertex normals from the base mesh works well in
practice. Using different techniques for computing the vertex nor-
mals results in only slightly different visual results.

As mentioned before, for the subdivision process to be well defined
for normals, normals in the support of the subdivision mask need to
be in a common hemisphere. If this is not the case for a very coarse
base mesh, this problem can be corrected by subdividing the mesh
before computing vertex normals from the face normals. Moreover,
the idea of starting the generation of vertex normals by subdivision
only after the second or third level of subdivision can be used to
get results that appear less smoothed as compared to the surface
normals. Fig. 4 compares several levels.

4.2 Blending vertex normals and surface normals

In a number of applications, one may want to correct the shad-
ing only where the shape exhibits artifacts (i.e., irregular vertices).
Subdivision Shading enables an elegant solution to this problem,
avoiding an explicit tracking of where to use which normal. At ini-
tialization, we equip each vertex i with a blend weight bi ∈ [0,1].
This weight will be interpolated to vertices inserted by subdivision
using linear interpolation (or potentially subdivision). The normal
in each vertex necessary for rendering is computed by interpolating
between the subdivided vertex normal and the surface normal in the
vertex using bi as the weight.

The typical scenario is to assign bi = 1 to irregular vertices and
bi = 0 to regular vertices. Then the local correction of vertex nor-
mals using the subdivided normals is only applied to irregular ver-
tices and the vertices inserted in their neighborhood. Fig. 5 shows

Figure 5: Blending surface normals in the vertices with subdi-
vided vertex normals. The images show from left to right: stan-
dard subdivision surface, subdivision shading, subdivided vertex
normals blended with normals of the subdivision surface, and the
color coded blend weights, where red corresponds to subdivided
normals and blue corresponds to surface normals.

examples of the resulting shaded images and the blending function.

As mentioned by Cignoni et al. [2005] and Rusinkiewicz et
al. [2006], amplifying local contrast through normal manipulation
can greatly improve visual features. Note that subdivided vertex
normals are smoother than the normals of the subdivision surface.
Instead of blending between the surface normals in vertices and the
subdivided vertex normals with positive weights, we can use neg-
ative weights to exaggerate the lacking smoothness of the surface
normals (see Fig. 6). This effect can be also controlled by the num-
ber of geometric subdivisions without performing subdivision on
the normals.

Figure 6: Extrapolating from the smooth subdivided vertex nor-
mals over the surface normals (shown left) results in a normal field
that enhances features in the subdivision surface. These normals
can be used for exaggerated shading, as demonstrated in the right
image

5 Discussion

While our approach is admittedly very simple, it offers a striking
balance between simplicity, speed, and visual quality. Its sim-
plicity allows every developer a quick implementation and evalu-
ation, even within a real-time context [Shiue et al. 2005]. Com-
putation times are similar to the generation of normals of the sub-
division surface, making sure production environments can keep
their adopted work flows. It works for any standard scheme (see
Fig. 2 for Catmull-Clark, and all other figures for subdivision on
triangle meshes), surfaces with boundary (see Fig. 3), and under
motions of light sources or the objects (please see the accompany-
ing video). The visual quality in the vicinity of irregular vertices is
always clearly better than using surface normals.

In particular, interpolating schemes such as Butterfly could become
a very attractive alternative to other constructions of smooth inter-
polating surfaces aiming mostly at the visual quality such as curved
PN triangles [Vlachos et al. 2001] (see Fig. 7 for a visual compari-
son): especially in games it is important to reuse the mesh defining
a character as the control mesh for a smooth geometry. Curved PN
triangles as interpolating subdivision preserve the original dimen-
sions of the shapes. While Butterfly is usually considered to gen-
erate shapes that are seriously lacking the necessary visual fidelity,
Subdivision Shading is attenuating the defects enough to make it
attractive again (see Figures 1, 4).

In the spirit of Phong Shading, one could stop the subdivision of
the geometry earlier than the subdivision of normals (see Fig. 9).
This generates a procedural normal texture for each triangle, which
can be useful in applications that are sensitive to the polygon count,
or for realtime screen-space sampling which might perform normal
subdivision in the fragment shader. In the extreme case, geometry
would not be subdivided at all (similar to Phong Shading). The
larger stencil of subdivision as compared to linear interpolation can



Figure 7: Comparing modified Butterfly subdivision with Subdivi-
sion Shading (right) to the quadratic normal fields of curved PN
triangle (middle). Note that the visual smoothness of Subdivision
Shading applied to Butterfly subdivision is similar or better.

Figure 8: Phong Shading compared to Subdivision Shading: when
subdividing only the normal field and keeping the original coarse
geometry, subdivision shading offers a variety of different light
spread effects over the surface.

be useful for tuning the appearance of highlights, as demonstrated
in Fig. 8.

We have found that computing normals after one level of standard
subdivision usually yields the best results. In fact, the only potential
problem we have encountered with Subdivision Shading so far is
backface normals influencing the front facing part of the surface
(this is a known problem of Phong Shading as well [Olano and Yoo
1993]). Computing base normals after a few steps of subdivision
corrects this problem.

Interesting avenues for research are devising special subdivision
rules for the normals as well as geometry-aware blending of vertex
and surface normals. Furthermore, it might be possible to modify
positions based on the normals. This raises the question of the in-
tegrability of the so-defined normals, and the potential surface they
define.
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KARČIAUSKAS, K., AND PETERS, J. 2007. Bicubic polar subdivision. ACM Trans-
actions on Graphics 26, 4 (Oct.), 14:1—-14:6.
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Figure 9: Subdividing vertex normals further than geometry can be
used to generate smooth procedural normal textures for compara-
bly coarse geometry. This might be useful for scenarios where the
polygon count is more critical than the number of pixels/fragments
to shade.


